Effect of Mobility on Community Participation at 1 year Post-Injury in Individuals with Traumatic Brain Injury (TBI)

Irene Ward, PT, DPT, NCS
Brain Injury Clinical Research Coordinator
Kessler Institute for Rehabilitation
Introduction

• 5.3 million individuals are living with long-term disability due to a TBI in the US.
 – Unemployment
 – Changes in family dynamics
 – Social Isolation
 – Physical disability
 – Secondary health issues
Introduction

• Impaired motor, balance and cognitive functions following a TBI may result in a person becoming dependent on another’s assistance with walking.

• The loss of independent walking is perceived as the most disabling consequence following a stroke. …But what about the TBI population?
Objectives

• Describe how mobility changes over the course of time following a traumatic brain injury.

• Describe how mobility may influence different aspects of the individual’s life following a traumatic brain injury.
Methods

• Observational study using prospectively collected data from a TBI Model Systems center
 – Northern New Jersey Traumatic Brain Injury System
 – Information is collected at 1, 2, 5 and every 5 years after that.
 – **Moderate to Severe TBI:**
 • PTA > 24 hours
 • Trauma related abnormalities on the CT scan
 • Loss of Consciousness > 30 min
 • GCS <13 at time of injury
 – Admission into acute care hospital within 72 hours of injury and into acute inpatient rehab hospital within 72 hours of discharge from hospital
Methods

• **Setting:** Acute Inpatient Rehabilitation Hospital (AIRH) and community

• **Procedure:** A structured interview and assessments were conducted with the patient or surrogate while in AIRH and in the community at 1 year post discharge from AIRH.
Measures

Mobility: FIM™ – Walking Item

• Rating dependent upon level of **assistance** and **distance** walked.

• Ranges from 1 (total assistance required or walks less than 50ft) to 7 (walks independently without a device AND for at least 150ft).
Measures

Supervision Rating Scale (SRS)

- "Supervision" = someone is responsible for being with the participant.
- Ranges from 1 (independent) to 13 (full time direct supervision required).

Disability Rating Scale (DRS)

- 8-item measure of disablement (eye opening, communication, motor response, feeding, toileting, grooming, level of functioning, and employability).
- Maximum score is 29, indicating extreme vegetative state.
Measures

Participation Assessment with Recombined Tools (PART)

- 17-item questionnaire measuring frequency of engagement in community activities.

- PART Total Summary Score was used as a measure of community participation.

- Item 8 was used to identify individuals who did not leave their homes on a daily basis.

 In a typical week, how many days do you get out of your house and go somewhere? It could be anywhere – it doesn’t have to be anyplace “special”.

Measures

Satisfaction With Life Scale (SWLS)

• 5-item, global self-report measure of subjective well-being.
 1. In most ways my life is close to my ideal.
 2. The conditions of my life are excellent.
 3. I am satisfied with my life.
 4. So far I have gotten the important things I want in life.
 5. If I could live my life over, I would change almost nothing.

• Items are rated on a Likert scale ranging from 1 (strongly disagree) to 7 (strongly agree).

• The total score ranges from 5 to 35 in which higher numbers indicate greater satisfaction with one’s life.
Participants

Total Sample

• **245** patients admitted to AIRH with TBI
• **156** (63.7%) *moderate*, **88** (35.9%) *severe*
• Ages ranged between **16 and 92** years old
• Mean LOS in acute hospital = **16.19 days** (SD ±13.7)
• Mean LOS in AIRH = **24.60 days** (SD ± 17.34)
Participants

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>81</td>
<td>33.1</td>
</tr>
<tr>
<td>Male</td>
<td>164</td>
<td>66.9</td>
</tr>
<tr>
<td>Race/ Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>162</td>
<td>66.1</td>
</tr>
<tr>
<td>Black</td>
<td>35</td>
<td>14.3</td>
</tr>
<tr>
<td>Asian/ Pacific Islander</td>
<td>6</td>
<td>2.4</td>
</tr>
<tr>
<td>Hispanic</td>
<td>34</td>
<td>13.9</td>
</tr>
<tr>
<td>Other</td>
<td>8</td>
<td>3.3</td>
</tr>
<tr>
<td>Cause of Injury</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>114</td>
<td>46.5</td>
</tr>
<tr>
<td>Vehicular</td>
<td>102</td>
<td>41.6</td>
</tr>
<tr>
<td>Assault</td>
<td>19</td>
<td>7.8</td>
</tr>
<tr>
<td>Sports</td>
<td>5</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Participants

Sample was divided into 2 groups based on walking status.

- At admission and discharge from AIRH
 - Independent Ambulator: FIM™-Walking = 6 or 7
 - Dependent Ambulator: FIM™-Walking ≤5

- 1 year post-injury - revised criteria to capture decline in function
 - Independent Ambulator: FIM™-Walking = 6 or 7 AND same or better than at discharge
 - Dependent / Declining Ambulator: FIM™-Walking ≤5 OR worse than at discharge.
Changes in Mobility Over Time

Figure 1: Walking at Admission
- 100% Independent

Figure 2: Walking at Discharge
- 39% Dependent
- 61% Independent

Figure 3: Walking at 1 Year Post-Injury
- 15% Dependent/Declining
- 85% Independent
Impact of Mobility at 1 Year Post Injury

<table>
<thead>
<tr>
<th>Variables</th>
<th>Dependent/Declining Ambulator</th>
<th>Independent Ambulator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Age at Injury*</td>
<td>61.5</td>
<td>21.7</td>
</tr>
<tr>
<td>SRS*</td>
<td>7.4</td>
<td>4.4</td>
</tr>
<tr>
<td>DRS*</td>
<td>6.5</td>
<td>3.3</td>
</tr>
<tr>
<td>PART*</td>
<td>0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>SWLS*</td>
<td>16.2</td>
<td>9.5</td>
</tr>
</tbody>
</table>

![Bar chart showing percentage of highest possible score for different measures (SRS, DRS, PART, SWLS) between dependent and independent ambulators.](image-url)
Causes of TBI by Age Group

CDC
Conclusion

Individuals dependent on someone’s assistance with walking…

• Had a greater need for supervision

• Had higher rates of disability

• Were less likely to leave their homes and engage in community-based activities.

…and this may have contributed to their self-reported lower levels of life satisfaction.
Clinical Implications

Clinicians should consider ways to prevent the decline in walking ability.

• Find ways to promote walking
 – Activity monitors
 – Goals

• Incorporate interventions that improve independence with walking--- improve balance?

• Identify barriers that preclude community participation
Limitations

• Possible ceiling effect in FIM for categorizing mobility
 – Gait speed
 – Gait endurance
 – Balance measure
 – Activity Monitor

• Did not account for injuries that may restrict mobility in the early stage (i.e. fractures)

• Cognitive function- the need for supervision

• Results may not apply to a younger sample or to individuals outside this region (e.g. urban environments)
Future Research

• Use an outcome measure that better captures components of walking in the community for independent ambulators.

• Investigate interventions to improve independence with walking and identify environmental barriers that limit community participation.

• Explore the causes behind why certain patients are showing a decline in function.
Thank you!

Anthony Lequerica, PhD
Erin Donnelly, PT, MPT, NCS
Neil Jasey, MD
Nancy D. Chiaravalloti, PhD
Financial Support

The contents of this presentation were developed under a grant from the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR Grant #H133A120030).

NIDILRR is a Center within the Administration for Community Living (ACL), Department of Health and Human Services (HHS).
Questions?
References

